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Abstract
A practical and high-accuracy computation method to search for ground states of few-electron
systems is presented on the basis of the real-space finite-difference scheme. A linear
combination of Slater determinants is employed as a many-electron wavefunction, and the
total-energy functional is described in terms of overlap integrals of one-electron orbitals without
the constraints of orthogonality and normalization. In order to execute a direct energy
minimization process of the energy functional, the steepest-descent method is used. For
accurate descriptions of integrals which include bare-Coulomb potentials of ions, the
time-saving double-grid technique is introduced. As an example of the present method,
calculations for the ground state of the hydrogen molecule are demonstrated. An adiabatic
potential curve is illustrated, and the accessibility and accuracy of the present method are
discussed.

1. Introduction

Even with recent achievements which have resulted from a
lot of studies on the electronic structure calculations [1–17],
theoretical and methodological studies for simulations of
many-electron systems which yield more accurate results
without relying on approximations are very important and
interesting issues for computational physics, chemistry and
biology [18–24]. In addition, since high-performance
computing facilities are available in the present day, rigorous
or exact electronic structure calculations are feasible in studies
of many-electron systems.

In the present study, a simple and practical method to
search for ground states of few-electron systems is introduced
on the basis of the real-space finite-difference (RSFD)
scheme [25, 26]. As a many-electron wavefunction, a linear
combination of Slater determinants is employed, and the total-
energy functional is described with overlap integrals of one-
electron orbitals. The key point of the present method is
the direct energy minimization (DEM) of the total-energy
functional [27–30] based on the variational principle without
the constraints of orthogonality and normalization on the
one-electron orbitals. Thus, this method can be a practical

computational tool to search for the ground states without
using conventional self-consistent field techniques [31]. In
the Hartree–Fock (HF) theory [32], by way of comparison,
a single Slater determinant is employed as a many-electron
wavefunction, and the electron–electron interactions are
calculated through the self-consistent mean-field. In particular,
the HF method requires the constraints of orthogonality and
normalization on the one-electron basis set; as a compensation
for such constraints, enormously many Slater determinants are
required for high-accuracy computations [33].

In order to apply the present method to practical use, we
give a simple and accessible description of the steepest-descent
(SD) algorithm. For high-accuracy calculations of ionic
systems, the time-saving double-grid (DG) technique [34, 35]
is also introduced. A simple formulation for dealing with the
systems including nuclei whose potentials have singularities
is described, and successful results in which the numerical
calculation errors caused by the RSFD scheme are removed
by the DG technique are illustrated.

As an example of the present method, calculations
for the ground-state energy of the hydrogen molecule are
demonstrated. An adiabatic potential curve is illustrated
and the availability of the present method is discussed.

0953-8984/09/064231+06$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/6/064231
mailto:goto@prec.eng.osaka-u.ac.jp
http://stacks.iop.org/JPhysCM/21/064231


J. Phys.: Condens. Matter 21 (2009) 064231 H Goto and K Hirose

It will be shown that the evaluated equilibrium interatomic
distance and total energy are in good agreement with the exact
results [36, 37].

The rest of the paper is organized as follows. In
section 2, the total-energy functional for a many-electron
system is introduced as a function of the overlap integrals
of non-orthogonal one-electron basis functions using a linear
combination of Slater determinants. In section 3 the DEM
method using the SD algorithm without the constraints of
orthogonality and normalization on the one-electron basis set is
proposed, and in section 4 the DG technique for high-accuracy
numerical calculations of ionic systems is presented. Finally,
the method is applied to calculations of the ground state of the
hydrogen molecule as an example of two-electron systems in
section 5. A summary of the present study is given in section 6.

2. Representation of the total-energy functional

An expression of the total-energy functional for an N-electron
system is introduced here using Slater determinants as a
many-electron wavefunction. The N-electron wavefunction
�(r1, r2, . . . , rN ) is expanded in terms of non-orthogonal
Slater determinants as follows:

�(r1, r2, . . . , rN ) =
L∑

A=1

�A(r1, r2, . . . , rN ). (1)

Here, ri denotes the position of the i th electron and L denotes
the number of Slater determinants. Spin indices are ignored
for simplicity. �A(r1, r2, . . . , rN ) denotes the Ath Slater
determinant, as given by

�A(r1, r2, . . . , rN )

= 1√
N !

∣∣∣∣∣∣∣∣

φA
1 (r1) φA

2 (r1) · · · φA
N (r1)

φA
1 (r2) φA

2 (r2) · · · φA
N (r1)

...
...

. . .
...

φA
1 (rN ) φA

2 (rN ) · · · φA
N (rN )

∣∣∣∣∣∣∣∣
, (2)

with φA
i (r) being non-orthogonal and unnormalized one-

electron basis functions.
The overlap integral matrix S AB is defined by

S AB =

⎡

⎢⎢⎣

s AB
11 s AB

12 · · · s AB
1N

s AB
21 s AB

22 · · · s AB
2N

...
...

. . .
...

s AB
N1 s AB

N2 · · · s AB
N N

⎤

⎥⎥⎦ , (3)

where the elements s AB
i j denote the overlap integrals between

the one-electron basis functions, i.e.,

s AB
i j =

∫
dr φA∗

i (r)φB
j (r). (4)

Thus, we have the total-energy functional E which is
expressed explicitly using the overlap integral matrix as [31]

E =
∑L

A=1

∑L
B=1(〈Ĥ AB

0 〉 + 〈Ĥ AB
I 〉)

∑L
A=1

∑L
B=1 |S AB | , (5)

where 〈Ĥ AB
0 〉 and 〈Ĥ AB

I 〉 are the matrix elements of the
Hamiltonian,

Ĥ0 =
N∑

n=1

(− 1
2�n + V (rn)) (6)

and

ĤI =
N∑

n=1

N∑

n′=1

1

|rn − rn′ | , (7)

respectively. Here, V (r) stands for an external potential. These
matrix elements 〈Ĥ AB

0 〉 and 〈Ĥ AB
I 〉 are represented as [31]

〈Ĥ AB
0 〉 = |S AB |

N∑

i=1

N∑

j=1

[(S AB )−1] j ih
AB
i j (8)

and

〈Ĥ AB
I 〉 = 1

2 |S AB |
N∑

I=1

N∑

J=1

[(S AB )−1]J I

×
N−1∑

i=1

N−1∑

j=1

[(S AB
[I,J ])

−1] j i

∫
dr ϕAB

I J (r)[W AB
[I,J ](r)]i j , (9)

where

h AB
i j =

∫
dr φA∗

i (r)(− 1
2� + V (r))φB

j (r). (10)

Here, [(S AB)−1] j i denotes the element of the j th row and i th
column of the matrix (S AB)−1. S AB

I,J and W AB
[I,J ](r) represent

(N − 1)-dimensional matrices constructed by eliminating the
I th row and the J th column from the matrices S AB and
W AB (r), respectively, and the matrix W AB (r) is defined as

W AB (r) =

⎡

⎢⎢⎣

wAB
11 (r) wAB

12 (r) · · · wAB
1N (r)

wAB
21 (r) wAB

22 (r) · · · wAB
2N (r)

...
...

. . .
...

wAB
N1 (r) wAB

N2 (r) · · · wAB
N N (r)

⎤

⎥⎥⎦ , (11)

where

wAB
i j (r) =

∫
dr′ ν(r − r′)ϕAB

i j (r′), (12)

and
ϕAB

i j (r) = φA∗
i (r)φB

j (r). (13)

Here, ν(r − r′) is the electron–electron interaction between
electrons at positions r and r′, i.e.,

ν(r − r′) = 1

|r − r′| . (14)

Let us estimate the computational cost of equation (9).
Without respect to the number of employed Slater determinants
L, the calculation costs for S AB , |S AB | and (S AB )−1 are
N2 × Ngrid, N3 and N3, respectively. Here, Ngrid denotes the
number of grid points in space. Then (S AB

[I,J ])
−1 requires N5,

and the cost for W AB
[I,J ](r) is N2 × Ngrid [31]. As a result,

the dominant cost for computing equation (5) turns out to be
L2 × N4 × Ngrid, since Ngrid � N in the present case of few-
body electron systems.
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3. Direct energy minimization (DEM) using the
steepest-descent (SD) method

In order to search for ground states of target systems
based on the variational principle, the DEM method [27–30]
is carried out for the total-energy functional equation (5)
without restricting the orthogonality and normalization to the
one-electron basis set within the framework of the RSFD
scheme [25, 26]. In the DEM process, an arbitrary initial
state φA

j (ri )
(initial) is prepared. The SD direction ξ A

j (ri ) ≡
−δE/δφA∗

j (ri ) is given by

ξ A
j (ri ) = −

L∑

B=1

(
δ(〈Ĥ AB

0 〉 + 〈Ĥ AB
I 〉)

δφA∗
j (ri)

− E
∂|S AB |

∂φA∗
j (ri )

)/ L∑

A=1

L∑

B=1

|S AB |. (15)

In the SD procedure, the one-electron wavefunctions are
updated iteratively by

φA
j (ri )

(new) = φA
j (ri )

(old) + αA
j ξ A

j (ri) (i, j = 1, 2, . . . , N),

(16)
where αA

j is the acceleration parameter, which is determined
by

d

dαA
j

E(�∗(r1, r2, . . . , rN )[A, j ],�(r1, r2, . . . , rN )[A, j ]) = 0.

(17)
Here, �(r1, r2, . . . , rN )[A, j ] represents a many-electron
wavefunction in which the Ath Slater determinant is replaced
by

�A(r1, r2, . . . , rN )[ j ] ≡ ‖
φA
1


φA
2 · · · 
φA

N‖[ j ]

≡ ‖
φA
1


φA
2 · · · ( 
φA

j + αA
j

ξ A

j ) · · · 
φA
N‖

= ‖
φA
1


φA
2 · · · 
φA

N ‖ + αA
j ‖
φA

1

φA

2 · · · 
φA
N ‖( j) (18)

with

φA

i ≡ [φA
i (r1)φ

A
i (r2) · · · φA

i (rN )]t (19)

being a column vector constructing the Slater determinant
‖
φA

1

φA

2 · · · 
φA
N‖.

Here,

‖
φA
1


φA
2 · · · 
φA

N ‖( j) ≡ ‖
φA
1


φA
2 · · · 
φA

j−1

ξ A

j

φA

j+1 · · · 
φA
N ‖, (20)

and

ξ A

j ≡ [ξ A
j (r1)ξ

A
j (r2) · · · ξ A

j (rN )]t . (21)

Equation (17) gives a quadratic equation with respect to αA
j ,

(YH X S − X H YS)(α
A
j )2 + 2(X H Z S − Z H X S)α

A
j

+ (Z H YS − YH Z S) = 0. (22)

Here,

X H =
∫

d�

[ N∏

p=1

φA∗
p (rp)

]( j)

(Ĥ0 + ĤI )‖
φA
1


φA
2 · · · 
φA

N‖( j),

(23)

YH =
N∑

B=1

∫
d�

[ N∏

p=1

φA∗
p (rp)

]( j)

(Ĥ0 + ĤI )‖
φB
1


φB
2 · · · 
φB

N ‖,
(24)

Z H =
L∑

A=1

L∑

B=1

(〈H AB
0 〉 + 〈H AB

I 〉), (25)

X S =
∫

d�

[ N∏

p=1

φA∗
p (rp)

]( j)

‖
φA
1


φA
2 · · · 
φA

N ‖( j), (26)

YS =
N∑

B=1

∫
d�

[ N∏

p=1

φA∗
p (rp)

]( j)

‖
φB
1


φB
2 · · · 
φB

N‖, (27)

and

Z S =
L∑

A=1

L∑

B=1

|S AB |, (28)

where
[ N∏

p=1

φA∗
p (rp)

]( j)

≡ φA∗
1 (r1)φ

A∗
2 (r2) · · · φA∗

j−1(r j−1)ξ
A∗
j (r j )

× φA∗
j+1(r j+1) · · ·φA∗

N (rN ), (29)

and
∫

d� represents the integration with respect to the
coordinates ri for all electrons, i.e.,

∫
d� ≡

∫

r1

∫

r2

· · ·
∫

rN

dr1 dr2 · · · drN . (30)

One of the two solutions of equation (22), which gives
lower total energy, is adopted for updating the wavefunction
through equation (16). Iterations of the SD process for all of
the one-electron wavefunctions lead to a numerical solution
of the ground state. In the procedure of the DEM, numerical
calculations of the kinetic energy term are performed in the
RSFD scheme [25, 26]. In cases searching for excited states,
initial electronic states will converge to the excited states when
the DEM procedure is performed under a constraint of the
orthogonality with the ground state.

4. Time-saving double-grid (DG) technique

In the RSFD formalism [25, 26], the numerical values of
wavefunctions, charge densities and potentials are defined
only on discrete grid points in space. Therefore, total-
electron energies fluctuate depending on the positions of the
atoms relative to the grid points. This fluctuation is not
induced by physical phenomena but by numerical errors.
Although this problem can be avoided by reducing the grid
spacing, the usage of denser-grid points results in a substantial
increase of the computational workload. However, this
problem has been excellently conquered by the time-saving
DG technique [34, 35], in which coarse and dense grids are
used simultaneously. In the previous studies, the DG technique
is implemented only for systems in which pseudopotentials are
adopted as atomic potentials. In the present study, we apply the
DG technique to systems in which the bare atomic potential of
the nucleus

Vv(r) = − Zv

r
(31)

is employed, where Zv denotes the charge of the vth nucleus.
Now the bare atomic potential Vv(r) is separated into two parts
by the error function erf(avr) as

Vv(r) = V (soft)
v (r) + V (hard)

v (r), (32)

3
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Figure 1. Illustration of the atomic potential in the DG technique.
The solid and dashed lines represent the hard part V (hard)

v (r) and soft
part V (soft)

v (r) in equation (32), respectively. The atomic charge
Zv = 1 and av = 3.0 are adopted. A cut-off radius rc of 0.928 is
indicated in the condition that V (hard)

v (rc) becomes less than
1.0 × 10−4.

where

V (soft)
v (r) = − Zv

r
erf(avr), (33)

and

V (hard)
v (r) = − Zv

r
{1 − erf(avr)}. (34)

Here, av denotes the parameter to rule the locality of the
hard-part potential V (hard)

v (r). The potentials V (soft)
v (r) and

V (hard)
v (r) are illustrated in figure 1 in the case of av = 3.0. The

hard part V (hard)
v (r) attenuates rapidly with r so that dense-grid

points are defined only inside of the cut-off radius rc. On the
other hand, the soft part V (soft)

v (r) smoothly varies so that it is
defined only on coarse-grid points.

Let us consider the one-dimensional case for instance. In
order to calculate integrals including the hard part V (hard)

v (x)

with high accuracy, it should be evaluated using the numerical
values on dense-grid points as

∫
V (hard)

v (x)φ j(x) dx =
nd Ngrid/2−1∑

k=−nd Ngrid/2

V (hard)
v,k φ

(dense)
j,k δx . (35)

Here, φ
(dense)
j,k is the numerical value of the j th one-electron

wavefunction φ j (x) on the kth dense-grid point, and nd and ∂x
denote the number of dense-grid points per coarse-grid spacing
and the dense-grid spacing, respectively. For convenience,
Ngrid is chosen as an even integer.

Using the linear interpolation, φ
(dense)
j,k is expressed in

terms of the values at the coarse-grid points φ j,K and φ j,K+1

by

φ
(dense)
j,k = δX − (xk − X K )

δX
φ j,K

+ δX − (X K+1 − xk)

δX
φ j,K+1, (36)

where X K and xk represent the coordinates of the K th coarse-
grid point and kth dense-grid point, respectively, and ∂ X
denotes the coarse-grid spacing. Inserting equation (36)

Figure 2. Variation of the total energy of the hydrogen atom as a
function of the position of the nucleus with the choice of the
coarse-grid spacing δX = 0.2 bohr. The hydrogen atom is positioned
along the straight line shown in the inset in which the coarse-grid
points and the dense-grid points are indicated by crosses and open
circles, respectively. Two cases in which the number of dense-grid
points per coarse-grid spacing, nd, are shown is 3 and 25. The result
without using the DG technique is also illustrated for comparison.
Good stability of the DG technique can be seen.

into (35), we have the following expression for the integral
using only numerical values on coarse-grid points [34, 35]:

∫
V (hard)

v (x)φ j(x) dx =
Ngrid/2−1∑

K=−Ngrid/2

wv,K φ j,KδX, (37)

where

wv,K =
nd∑

s=−nd

δX − |X K − xnd K+s |
ndδX

V (hard)
v,nd K+s, (38)

which is a weight factor defined only on coarse-grid points.
Note that numerical values of wv,K can be calculated and
stored in advance.

Thus, for Nion ionic systems, equation (10) can be
expressed in the RSFD scheme as

h AB
i j =

Ngrid∑

K

φA∗
i,K

[
(− 1

2�) +
Nion∑

v=1

(V (soft)
v,K + wv,K )

]
φB

j,KδX. (39)

The kinetic energy term in equation (39) is treated by means of
the finite-difference formulae for the Laplacian [25, 26].

In order to illustrate the advantage of the DG technique,
the total-electron energy is calculated for a hydrogen atom
which is placed at an arbitrary position. We adopt a coarse-grid
spacing ∂ X of 0.2 bohr and a cut-off radius rc of 0.928 bohr
in the condition that V (hard)

v (rc) becomes less than 1.0 × 10−4.
Figure 2 illustrates the total energy in which the hydrogen atom
is positioned along the center line between coarse-grid points
as shown in the inset. Without using the DG technique, the
total energy fluctuates depending on the distance between the
nucleus position and the coarse-grid points. On the other hand,
the DG technique gives stable total energy for any position
of the hydrogen atom, and the stability is enhanced by a
large value of nd. In figure 3, where the hydrogen atom is

4
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Figure 3. Variation of the total energy of the hydrogen atom as a
function of the position of the nucleus. The coarse-grid spacing δX is
0.2 bohr. The hydrogen atom is positioned along the straight line
near the coarse-grid points shown in the inset, in which the
coarse- and the dense-grid points are indicated by crosses and open
circles, respectively. The number of dense-grid points per coarse-grid
spacing, nd, is 25. The result without using the DG technique is also
illustrated for comparison. Good stability of the DG technique
can be seen.

positioned along the line near coarse-grid points, the calculated
total energies without the DG technique show a more intensive
fluctuation than in figure 2. It is concluded that the DG
technique keeps the total energy stable independent of the
position of the hydrogen atom.

5. Example: hydrogen molecule

As an example of the proposed scheme for practical
calculations, the adiabatic potential curve of the hydrogen
molecule, which is a simple system consisting of two
electrons [33, 34], is estimated. The ground state is a singlet
one, which is symmetric with respect to coordinates r1 and
r2 [31]:

�(r1, r2) =
L∑

A=1

[φA
1 (r1)φ

A
2 (r2) + φA

2 (r1)φ
A
1 (r2)]. (40)

The DEM calculations are performed with 64 coarse-grid
points along the μ axis and a grid spacing δμ of 0.2 bohr,
where μ denotes x , y, or z, and nd = 25 is adopted. A single
Slater determinant is applied and the kinetic energy term is
calculated using the central-finite-difference formula [25, 26].
In the DEM procedure with the SD method, the iteration is
terminated when the sum of the norms of the residual-vectors
becomes less than 1.0 × 10−6. In preliminary calculations
using random values as initial wavefunctions, it was confirmed
that the wavefunctions converge to states localized near the
hydrogen atoms. These localized states are then adopted as
initial wavefunctions in the present calculations in order to
reduce the number of iterations.

Figure 4 illustrates the calculated ground-state energy
for the hydrogen molecule with respect to the interatomic
distance by employing the DG technique. The equilibrium

Figure 4. Calculated total energy of the hydrogen molecule as a
function of the interatomic distance by the DEM procedure
employing the DG technique. The number of coarse-grid points is 64
and nd is 25, and a coarse-grid spacing δX of 0.2 bohr is adopted. A
single Slater determinant is employed. The exact result by Kolos and
Wolniewicz is also indicated (×) [36].

Figure 5. Comparison of the charge density distribution along the
molecular axis of the hydrogen molecule evaluated at 1.401 bohr of
the interatomic distance between the present result (DEM) and that
of the diffusion Monte Carlo (DMC) study by Hongo et al [37]. The
computational condition is the same as in figure 4.

interatomic distance of 1.416 bohr is obtained with a total
energy of −1.154 48 au, and it decreases to −1.161 41 au in the
case of two Slater determinants, in agreement with the exact
results reported by Kolos and Wolniewicz: 1.401 bohr and
−1.174 48 au, which agree with the experimental ones [36].

Comparison of the charge density distribution along
the molecular axis of the hydrogen molecule, evaluated at
1.401 bohr, of the interatomic distance between the present
result obtained by the DEM and that of the diffusion Monte
Carlo (DMC) study by Hongo et al is shown in figure 5. As
the employed grid spacing (0.2 bohr) is large, the indicated
curve by the DEM is not sufficiently smooth compared to that
by the DMC. However, it can be thought that these results are
acceptable even when a single Slater determinant is adopted.
For higher-accuracy computations, many Slater determinants
should be employed.

5
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6. Conclusions

A simple and practical method of the search for ground states
of few-electron systems has been presented on the basis of the
RSFD scheme [25, 26]. As a many-electron wavefunction, a
linear combination of Slater determinants is employed, and the
total-energy functional is described with overlap integrals of
one-electron orbitals.

The ground-state search is performed by applying the
DEM procedure to the total-energy functional without the
constraints of orthogonality and normalization on the one-
electron basis set. For a practical use of the present method,
a simple and accessible description of the SD algorithm is
presented.

For high-accuracy descriptions of ionic systems, the
DG technique [34, 35] is employed. A simple formulation
for dealing with systems including nuclei is expressed, and
successful results in which the numerical calculation errors
caused by the RSFD method are removed by the DG technique
are illustrated.

As a practical example of the present method, calculations
for the ground-state energy of the hydrogen molecule are
demonstrated. An adiabatic potential curve is shown and the
accuracy of the calculated result is discussed. The equilibrium
interatomic distance and the total energy obtained are in good
agreement with the exact results [36, 37].

As a further development of the present scheme, calcula-
tions employing appropriate localized basis sets [27, 28, 30]
will be made in a future study so as to reduce computa-
tional workloads to be linearly proportional to the number of
electrons.
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